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Abstract

We present here a systematic study of general boundary value problems on weighted net-
works that includes the variational formulation of such problems. In particular, we obtain the
discrete version of the Dirichlet Principle and we apply it to the analysis of the inverse problem
of identifying the conductivities of the network in a very general framework. Our approach is
based on the development of an efficient vector calculus on weighted networks which mimetizes
the calculus in the smooth case. The key tool is an adequate construction of the tangent space
at each vertex. This allows us to consider discrete vector fields, inner products and general met-
rics. Then, we obtain discrete versions of derivative, gradient, divergence and Laplace-Beltrami
operators, satisfying analogous properties to those verified by their continuous counterparts. On
the other hand we develop the corresponding integral calculus that includes the discrete versions
of the Integration by Parts technique and Green’s Identities. Finally, we apply our discrete vec-
tor calculus to analyze the consistency of difference schemes used to solve numerically a Robin
boundary value problem in a square.

Key Words: Weighted networks, Vector Calculus, Discrete operators, Discrete Green’s Iden-
tities, Discrete boundary value problems, Inverse problem, Difference schemes.

1 Introduction

The discrete vector calculus theory is a very fruitful area of work in many mathematical branches
not only for its intrinsic interest but also for its applications, [2, 5, 7, 13, 18, 19]. One can construct
a discrete vector calculus by considering simplicial complexes that approximates locally a smooth
manifold and then the Whitney application can be used to define inner products on the cochain
spaces. This gives rise to a combinatorial Hodge theory that allows to translate the basic notions
of Riemannian geometry into combinatorial terms and that shows that the combinatorial objects
are good approximations for the smooth ones, [11].

Alternatively, one can approximate a smooth manifold by means of non-simplicial meshes and
then one can define discrete operators either by truncating the smooth ones or interpolating on
the mesh elements. This approach is considered in the aim of mimetic methods which are used in
the context of difference schemes to solve numerically boundary values problems. These methods
have good computational properties, [12, 13]. Another approach is to deal with the mesh as the
unique existent space and then the discrete vector calculus is described throughout tools from the

1



Algebraic Topology since the geometric realization of the mesh is a unidimensional CW-complex.
So, the discrete operators can be defined in combinatorial terms, [9, 19].

Our work falls within the last ambit but, instead of importing the tools from Algebraic Topology,
we construct the discrete vector calculus from the graph structure itself following the guidelines
of Differential Geometry. The key to develop our discrete calculus is an adequate construction of
the tangent space at each vertex of the graph. The concepts of discrete vector fields and bilinear
forms are a likely result of the definition of tangent space. Moreover, they are general, while only
orthogonal bilinear forms and vector fields that are either symmetric or antisymmetric are habitually
considered in the literature, [5, 7]. We obtain discrete versions of the derivative, gradient, divergence
and Laplace-Beltrami operators that satisfy the same properties that its continuum analogues.

We also develop an integral calculus that includes the discrete versions of Integration by Parts
formulae, Divergence Theorem and the Green’s Identities. As a consequence we describe appro-
priately general boundary value problems on arbitrary nonempty subsets of weighted networks as
well as its variational formulation. Then, we obtain necessary and sufficient conditions for the exis-
tence and uniqueness of solution. Moreover, we give the discrete version of the Dirichlet Principle
for self-adjoint boundary value problems associated with elliptic operators. As an application we
obtain a generalization of the inverse problem of identifying the conductivity between nodes in the
network that has been considered in [7]. Finally, we apply our discrete vector calculus to analyze
the consistence of difference schemes used to solve numerically a Robin boundary value problem in
a square. We show that any difference scheme is completely determined by a vector field and a field
of endomorphisms and we also show that these fields induce, in a natural way, a discretization of
the co-normal derivative. Therefore, special properties of the difference schemes such as consistency
and positivity can be characterized in terms of the fields.

2 Preliminaries

Throughout the paper, Γ = (V,E) denotes a simple connected and locally finite graph without
loops, with vertex set V and edge set E. Two different vertices, x, y ∈ V , are called adjacent,
which is represented by x ∼ y, if {x, y} ∈ E. In this case, the edge {x, y} is also denoted as exy

and the vertices x and y are called incidents with exy. In addition, for any x ∈ V the value k(x)
denote the number of vertices adjacent to x. Moreover, d(x, y) is the length of the shortest path
joining x and y and it is well-known that d defines a distance on the graph.

Given a vertex subset F ⊂ V , we denote by F c its complement in V and by χF its characteristic

function. Moreover, the sets
◦
F= {x ∈ F : {y : d(x, y) = 1} ⊂ F}, δ(F ) = {x ∈ V : d(x, F ) = 1}

and F̄ = F ∪ δ(F ), are called interior, boundary and closure of F , respectively.

We denote by C(V ), C(V ×V ) and C(V ×V ×V ), the vector spaces of real functions defined on
the sets that appear between brackets. If u ∈ C(V ), f ∈ C(V × V ) and a ∈ C(V × V × V ), uf and
u a denote the functions defined for any x, y, z ∈ V as (uf)(x, y) = u(x)f(x, y) and (u a)(x, y, z) =
u(x)a(x, y, z), respectively. In addition, given F ⊂ V and f ∈ C(V ×V ) we call the restriction of f
on F , the function fF ∈ C(V × V ) given by fF (x, y) = f(x, y), when (x, y) ∈ F̄ × F̄ \ δ(F )× δ(F )
and fF (x, y) = 0, otherwise.

If u ∈ C(V ), the support of u is the set supp(u) = {x ∈ V : u(x) 6= 0}. The vector space formed
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by the functions in C(V ) with finite support is denoted by C0(V ). Clearly C(V ) = C0(V ) iff Γ is a
finite graph; i.e., iff V is a finite set. In addition, if F ⊂ V , C(F ) denotes the subspace of C(V )
formed by the functions whose support is contained in F .

A function ν ∈ C(V ) is called a weight on V if ν(x) > 0 for all x ∈ V . For each weight ν on V

and any u ∈ C0(V ) we denote by
∫

V
u dν the value

∑
x∈V

u(x) ν(x). In particular, when ν(x) = 1 for

any x ∈ V ,
∫

V
u dν is simply denoted by

∫
V

u dx.

Throughout the paper we make use of the following subspaces of C(V × V ) and C(V × V × V ):

C(Γ) = {f ∈ C(V × V ) : f(x, y) = 0, if d(x, y) 6= 1},

C(Γ× Γ) = {f ∈ C(V × V × V ) : f(x, y, z) = 0, if d(x, y) · d(x, z) 6= 1}.

Next we define the tangent space at a vertex of a graph, see [2] for its definition in the case of
grids. Given x ∈ V , we call the real vector space of formal linear combinations of the edges incident
with x, tangent space at x and we denote it by Tx(Γ). So, the set of edges incident with x is a basis
of Tx(Γ), that is called coordinate basis of Tx(Γ) and hence, dim Tx(Γ) = k(x). Note that, in the
discrete setting, the dimension of the tangent space varies with each vertex except when the graph
is regular.

We call any application f : V −→
⋃

x∈V
Tx(Γ) such that f(x) ∈ Tx(Γ) for each x ∈ V , vector field

on Γ. The support of f is defined as the set supp(f) = {x ∈ V : f(x) 6= 0}. The spaces of vector
fields and vector fields with finite support on Γ are denoted by X (Γ) and X0(Γ), respectively.

If f is a vector field on Γ, then f is uniquely determined by its components in the coordinate
basis. Therefore, we can associate with f the function f ∈ C(Γ) such that for each x ∈ V , f(x) =∑
y∼x

f(x, y) exy and hence X (Γ) can be identified with C(Γ).

A vector field f is called a flow when its component function satisfies that f(x, y) = −f(y, x)
for any x, y ∈ V . If f ∈ X (Γ) we call flow determined by f the field f̂ whose component function is
f̂(x, y) = 1

2 (f(x, y)− f(y, x)), where f is the component function of f. Clearly f̂ = f iff f is a flow
and f̂ ∈ X0(Γ) when f ∈ X0(Γ). More generally, if ν ∈ C(V ) is a weight on V , a vector f is called a
ν-flow when the vector field νf is a flow.

If u ∈ C(V ) and f ∈ X (Γ) has f ∈ C(Γ) as its component function, the field uf is defined as the
field whose component function is uf . In addition, when F ⊂ V the restriction of f on F is the
vector field fF whose component function is fF . Moreover, supp(fF ) ⊂ F̄ and fF is a ν-flow when f
is.

If f, g ∈ X (Γ) and f, g ∈ C(Γ) are their component functions, the expression 〈f, g〉 denotes the
function in C(V ) given by

〈f, g〉(x) =
∫

V
f(x, y)g(x, y) dy, for any x ∈ V . (1)

Clearly, for any x ∈ V , 〈·, ·〉(x) determines an inner product on Tx(Γ). So, if for each x ∈ V ,
T 2

x (Γ) is the vector space of bilinear forms on Tx(Γ), the application 〈·, ·〉:V −→
⋃

x∈V
T 2

x (Γ) can be

considered as a metric on Γ that we call the canonical metric.
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If for each x ∈ V , we consider T 1
x (Γ) the vector space of endomorphisms on Tx(Γ), we call any

application A:V −→
⋃

x∈V
T 1

x (Γ) such that for any x ∈ V , A(x) ∈ T 1
x (Γ), field of endomorphisms on

Γ. The vector space of fields of endomorphisms on Γ is denoted by T 1(Γ).

If A ∈ T 1(Γ), its component function is the function a ∈ C(Γ× Γ) such that

a(x, y, z) = 〈A(x)exz, exy〉(x), for any x ∈ V and y ∼ x, z ∼ x. (2)

If A ∈ T 1(Γ) and f ∈ X (Γ) we define Af the vector field whose component function is given by
h(x, y) =

∑
z∈V

a(x, y, z)f(x, z), for any x, y ∈ V , where a ∈ C(Γ×Γ) and f ∈ C(Γ) are the component

functions of A and f, respectively.

If A ∈ T 1(Γ) and a ∈ C(Γ × Γ) is its component function, we say that the field A is diagonal,
symmetric or positive (semi)-definite if for any x ∈ V , the matrix

(
a(x, y, z)

)
y∼x
z∼x

has the same

property and we say that A is invertible iff A(x) is for any x ∈ V . In this case, we denote by A−1

the field of endomorphisms defined as A−1(x) = (A(x))−1. Moreover, when A is symmetric and
positive definite the expression 〈Af, g〉 determines a metric on Γ. Observe that A is a diagonal field
of endomorphisms iff a(x, y, z) = 0 for any x, y, z such that y 6= z.

The triple (Γ, µ, ν), where µ, ν are two weights on V , is called weighted graph. We always
suppose that a weighted graph is endowed with the canonical metric. So, on a weighted graph we
can consider the following inner products on C0(V ) and on X0(Γ),∫

V
u v dν, u, v ∈ C0(V ) and

1
2

∫
V
〈f, g〉 dµ, f, g ∈ X0(Γ), (3)

where the factor 1
2 is due to the fact that each edge is considered twice. In addition, the above

expressions are also valid when only one of the functions or one of the vector fields has finite
support.

3 Difference operators on weighted graphs

Our objective in this section is to define the discrete analogues of the fundamental first and second
order differential operators on Riemannian manifolds, specifically the derivative, gradient, diver-
gence and the composition of the divergence with a linear operator that acts on the derivative. The
last one is called second order difference operator whereas the former are generically called first
order difference operators.

From now on we suppose fixed the weighted graph (Γ, µ, ν) and also the associated inner prod-
ucts on C0(V ) and X0(Γ).

We call derivative operator the linear application d: C(V ) −→ X (Γ) that assigns to any u ∈ C(V )
the flow du, called derivative of u, given by

(du)(x) =
∑
y∼x

(
u(y)− u(x)

)
exy. (4)

Clearly, it is verified that du = 0 iff u is a constant function.
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We define the divergence operator as the linear application div :X (Γ) −→ C(V ) that assigns to
any f ∈ X (Γ) the function div f, called divergence of f, determined by the relation∫

V
u div f dν = −1

2

∫
V
〈du, f〉 dµ, for any u ∈ C0(V ). (5)

Therefore, if f ∈ C(Γ) denotes the component function of f, then

div f(x) =
1

ν(x)

∫
V

(̂µf)(x, y) dy, (6)

which in particular implies that div f ∈ C0(V ) when f ∈ X0(Γ). Observe that Identity (5) says
that div = −d∗ with respect to the inner products given on C0(V ) and X0(Γ). In addition, when
f ∈ X0(Γ) Identity (5) is also valid for any u ∈ C(V ). When ν = µ = 1, then the corresponding
divergence operator will be denoted by Div . Clearly for any weights ν, µ it is verified that div f =
1
ν Div (µf), for any f ∈ X (Γ).

Now we introduce the fundamental second order difference operators on C(V ) which are obtained
by composition of two first order operators. For each field of endomorphisms A consider the
endomorphism of C(V ) given by L(u) = −div (Adu), for any u ∈ C(V ). When A is symmetric and
positive definite, then Ad can be interpreted as the gradient operator associated with the metric
determined by A−1 and hence L is nothing else than the Laplace-Beltrami operator associated with
this metric.

Given A ∈ T 1(Γ), A∗ denotes the field of endomorphism that assigns to any x ∈ V the transpose
of A(x) and then we define the endomorphism L∗(u) = −div (A∗du). The definition of the above
second order difference operator leads directly to the identities∫

V
vL(u) dν =

1
2

∫
V
〈Adu, dv〉 dµ =

∫
V

uL∗(v) dν, for any u, v ∈ C0(V ) (7)

that are also valid when only one of the functions is in C0(V ). In particular, L∗ is the adjoint of L
on C0(V ) and L is self-adjoint when A is a symmetric field of endomorphisms. Observe that taking
v = 1 in Identity (7) we obtain that∫

V
L(u) dν = 0, for any u ∈ C0(V ). (8)

Identity (7) leads us to generalize the concept of elliptic operator introduced by Y. Colin de
Verdière in [8]. So, we say that the operator L is semi-elliptic when it is self-adjoint and positive
semi-definite on C0(V ) and elliptic when, in addition, u ∈ C0(V ) verifies that L(u) = 0 iff u
is constant and hence u = 0 when Γ is not finite. The above notions do not depend on the
weight ν and for this reason the pair (A, µ) is called semi-elliptic or elliptic when the operator L is
semi-elliptic or elliptic, respectively. Clearly, if A is a symmetric and positive semi-definite field of
endomorphisms, then the pair (A, µ) is semi-elliptic for any weight µ and it is elliptic if, in addition,
A is a positive definite field.

Our next aim is to obtain an explicit expression of L(u) for any u ∈ C(V ). From Identity (7),
and keeping in mind that L is a linear operator, it is clear that

L(u)(x) =
1

2ν(x)

∑
y∈V

u(y)
∫

V
〈Adεy, dεx〉 dµ, for any x ∈ V.
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Therefore, we define the coefficient function of the pair (A, µ) as the function c:V × V −→ R given
by c(x, x) = 0 for any x ∈ V and

c(x, y) = −1
2

∫
V
〈Adεy, dεx〉 dµ, if x 6= y. (9)

As we will prove in the next lemma c(x, y) = 0 when d(x, y) > 2, which reflects a locality property
of the operator L. Observe that if we denote by c∗ the coefficient function of the pair (A∗, µ), then
Identity (9) implies that c(y, x) = c∗(x, y) for any x, y ∈ V and in particular, that c = c∗ when A
is a symmetric field.

Lemma 3.1 Let A ∈ T 1(Γ), a ∈ C(Γ × Γ) its component function, µ a weight on V and c the
coefficient function of the pair (A, µ). Then,

c(x, y) =
1
2

∫
V

[
µ(x)a(x, z, y) + µ(y)a(y, x, z)− µ(z)a(z, x, y)

]
dz,

for any x, y ∈ V with x 6= y. In addition, for any x ∈ V we get that∫
V

c(x, y) dy =
∫

V
c(y, x) dy =

µ(x)
2

∫
V×V

a(x, y, z) dydz +
1
2

∫
V

µ(z)a(z, x, x) dz.

In particular, c(x, y) = 0 when d(x, y) > 2, c(x, y) = −1
2

∫
V

µ(z)a(z, x, y) dz if d(x, y) = 2, whereas

c(x, y) =
1
2

∫
V

[
µ(x)a(x, z, y) + µ(y)a(y, x, z)

]
dz if d(x, y) = 1 and x and y do not belong to any

triangle.

Proof. Firstly, if x 6= y applying Identity (7) to u = εy and v = εx we obtain that

c(x, y) = −ν(x)L(εy)(x) = −ν(y)L∗(εx)(y)

and hence, applying now Identity (8) to L∗ and u = εx, we get that

0 =
∫

V
L∗(εx) dν = ν(x)L∗(εx)(x)−

∫
V

c(x, y) dy =
1
2

∫
V
〈Adεx, dεx〉 dµ−

∫
V

c(x, y) dy.

In conclusion∫
V

c(x, y) dy =
1
2

∫
V
〈Adεx, dεx〉 dµ =

1
2

∫
V
〈A∗dεx, dεx〉 dµ =

∫
V

c∗(x, y) dy =
∫

V
c(y, x) dy.

Given x, y ∈ V , let hx and gy be the component functions of the vector fields hx = dεx and
gy = Adεy, respectively.

On one hand, hx(x, z) = −1, if z ∼ x, hx(y, x) = 1, if y ∼ x and hx(y, z) = 0, otherwise, which

implies that if f ∈ X (Γ) then 〈dεx, f〉(x) = −
∫

V
f(x, y) dy, whereas if y 6= x, 〈dεx, f〉(y) = f(y, x)

On the other hand, gy(w, t) = a(w, t, y), if w 6= y and gy(y, t) = −
∫

V
a(y, t, z) dz, which implies

that 〈Adεy, dεx〉(z) = gy(z, x) if z 6= x and 〈Adεy, dεx〉(x) = −
∫

V
gy(x, t) dt.
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Therefore, for any x, y ∈ V we obtain the identity

1
2

∫
V
〈Adεy, dεx〉 dµ = −µ(x)

2

∫
V

gy(x, t) dt +
1
2

∫
V

µ(z) gy(z, x) dz.

So, if x 6= y

1
2

∫
V
〈Adεy, dεx〉 dµ = −µ(x)

2

∫
V

a(x, t, y) dt− µ(y)
2

∫
V

a(y, x, z) dz +
1
2

∫
V

µ(z) a(z, x, y) dz,

whereas
1
2

∫
V
〈Adεx, dεx〉 dµ =

µ(x)
2

∫
V

∫
V

a(x, t, z) dzdt +
1
2

∫
V

µ(z) a(z, x, x) dz.

Finally, if d(x, y) ≥ 2 then a(x, z, y) = a(y, x, z) = 0 for any z ∈ V since x 6∼ y, which implies

that c(x, y) = −1
2

∫
V

µ(z)a(z, x, y) dz. Moreover when d(x, y) > 2 then a(z, x, y) = 0, since x ∼ z

and y ∼ z, implies that d(x, y) ≤ 2. In addition, if d(x, y) = 1 but x and y are not vertices of any
triangle, then there are not z ∈ V such that z ∼ x, y, which implies that a(z, x, y) = 0 for any

z ∈ V and hence c(x, y) =
1
2

∫
V

[
µ(x)a(x, z, y) + µ(y)a(y, x, z)

]
dz.

We remark that when A is a diagonal field of endomorphisms, then

c(x, y) =
1
2

(
µ(x)a(x, y, y) + µ(y)a(y, x, x)

)
, for any x, y ∈ V

and hence c(x, y) = 0 when d(x, y) 6= 1. In addition, c = c∗ since any diagonal field of endomor-
phisms is symmetric. The above equality proves that, in general, A can not be uniquely determined
by c. For instance, if we take f ∈ 1

µC
s(Γ), g ∈ 1

µC
a(Γ) and A the diagonal field of endomorphism

whose coefficient function is given by a(x, y, y) = f(x, y) + g(x, y) for any x, y ∈ V , then c = f and
hence c does not depend on g.

Now we can describe explicitly the operator L and also its associated bilinear form. For that,
it will be useful to consider the symmetric and skew-symmetric parts of A, that are the fields of
endomorphisms As,Aa defined respectively by As(x) = 1

2(A(x)+A∗(x)) and Aa(x) = 1
2(A(x)−A∗(x))

for any x ∈ V . Moreover, the functions cs = 1
2(c+c∗) and ca = 1

2(c−c∗) are the coefficient functions
of the pairs (As, µ) and (Aa, µ), respectively.

Proposition 3.2 For any u ∈ C(V ) we have that

L(u)(x) =
1

ν(x)

∫
V

c(x, y)
(
u(x)− u(y)

)
dy, for any x ∈ V .

Moreover, if v ∈ C0(V ), then∫
V

vL(u) dν =
1
2

∫
V×V

cs(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
dxdy +

∫
V×V

ca(x, y) u(x) v(y) dxdy.

Proof. From the definition of the coefficient function we obtain that

L(u)(x) =
−1
ν(x)

∫
V

c(x, y) u(y) dy +
u(x)
2ν(x)

∫
V
〈Adεx, dεx〉 dµ,
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for any u ∈ C(V ) and any x ∈ V . Moreover, in the proof of Lemma 3.1, we have showed that∫
V

c(x, y) dy =
1
2

∫
V
〈Adεx, dεx〉 dµ,

and hence the first equality follows. Now, given v ∈ C0(V ), then∫
V

vL(u) dν =
∫

V×V
c(x, y) v(x)

(
u(x)− u(y)

)
dydx

and hence ∫
V

vL(u) dν =
1
2

∫
V×V

c(x, y) v(x)
(
u(x)− u(y)

)
dydx

− 1
2

∫
V×V

c(y, x) v(y)
(
u(x)− u(y)

)
dxdy

=
1
2

∫
V×V

c(x, y)
(
u(x)− u(y)

) (
v(x)− v(y)

)
dydx

+
∫

V×V
ca(x, y) v(y)

(
u(x)− u(y)

)
dxdy.

The result follows taking into account that from Lemma 3.1,
∫

V
ca(x, y) dx = 0 for any x ∈ V and

that∫
V×V

c(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
dxdy=

∫
V×V

cs(x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
dxdy.

The above proposition implies that the bilinear form
∫

V
vL(u) dν is symmetric, or equivalently

that L is a self-adjoint operator on C0(V ), iff c = c∗. Therefore, the pair (A, µ) is semi-elliptic iff
c = c∗ and in addition∫

V×V
c(x, y)

(
u(x)− u(y)

)2
dxdy ≥ 0, for any u ∈ C0(V ).

We remark that the above inequality, does not imply the non negativeness of the function c.
For instance, if we consider K3 = {x1, x2, x3} the complete graph, µ = 1 and A the diagonal field
of endomorphisms whose component function is given by

a(x1, x2, x2) = a(x2, x1, x1) = 3, a(x2, x3, x3) = a(x3, x2, x2) = 2,

a(x1, x3, x3) = a(x3, x1, x1) = −1, a(x, y, z) = 0, otherwise,

then c(x, y) = a(x, y, y), for any x, y ∈ K3 and the pair (A, µ) is elliptic.

Moreover the fact c = c∗ does not imply the symmetry of the field of endomorphisms, or in
an equivalent manner ca = 0 does not imply that Aa = 0. For instance, if we consider again
K3 = {x1, x2, x3} the complete graph, µ = 1 and A the skew-symmetric field of endomorphisms
whose component function is given by

a(x1, x2, x3) = −a(x1, x3, x2) = a(x2, x1, x3) = −a(x2, x3, x1) = 1, a(x, y, z) = 0, otherwise,
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then c(x, y) = 0, for any x, y ∈ K3. Therefore, it will be useful to assume that the field A is
symmetric when L is self-adjoint. So, in the sequel both properties will be consider equivalent.

On the other hand, it is clear that if A is a symmetric field and c is a non negative function,
then the pair (A, µ) is semi-elliptic. If in addition c(x, y) > 0 when x ∼ y, then the pair (A, µ) is
elliptic. For this reason , we say that the operator L, or equivalently the pair (A, µ), is strongly
elliptic, if c = c∗, c ≥ 0 and moreover c(x, y) > 0 when x ∼ y.

Observe that when L is a strongly elliptic operator, then for any finite subset F ⊂ V the value
c(F ) = 1

2 min{c(x, y) : x, y ∈ F̄ , x ∼ y} satisfies that c(F ) > 0 and hence we get that∫
V

uL(u) dν ≥ c(F )
∫

V
〈du, du〉 dx, for any u ∈ C(F ).

In view of applications, it is of interest to describe when the pair (A, µ) is strongly elliptic.
The following result establishes simple conditions on the component function of A to ensure this
property, independently of the weight µ.

Lemma 3.3 Let A be a symmetric field of endomorphisms and a ∈ C(Γ×Γ) its component function.

If a(z, x, y) ≤ 0 for all x, y, z ∈ V with x 6= y and
∫

V
a(x, y, z) dz ≥ 0 for all x, y ∈ V , then c ≥ 0

for any weight µ and c = 0 iff A = 0. In addition, if when x ∼ y it is verified that either∫
V

a(x, y, z) dz > 0 or there exists z ∈ V such that a(z, x, y) < 0, then c(x, y) > 0 for any weight µ.

The above lemma allows us to solve in some cases the problem of identifying the field of
endomorphisms from the coefficient function. Specifically, if A1 and A2 are fields of endomorphisms
such that A1 − A2 verifies the hypotheses of the above lemma, then c1 = c2 iff A1 = A2, where c1

and c2 are the coefficient functions associated to (A1, µ) and (A2, µ).

Observe that if for each x ∈ V we consider the symmetric matrix of order k(x) given by
A(x) =

(
a(x, y, z)

)
y∼x
z∼x

, then the hypotheses of the above lemma say nothing else than A(x) is a

diagonally dominant M -matrix and hence a positive semi-definite matrix. Now, we generalized the
above identification property.

Proposition 3.4 Let µ be a weight and c1 and c2 the coefficient functions of the pairs (A1, µ) and
(A2, µ), respectively. If A1 − A2 is symmetric and positive semi-definite, then c1 = c2 iff A1 = A2.

Proof. It suffices to prove that if A is a symmetric and positive definite field of endomorphisms,
then c = 0 iff A = 0. Clearly, c = 0 when A = 0. Conversely, if c = 0 then, from Identity (7)

0 =
∫

V
〈Adu, dv〉 dµ

and hence 〈Adu, dv〉 = 0 for any u, v ∈ C(V ), since A is positive semi-definite. Moreover, if f is the
component function of the field Adu, then for any x, y ∈ V , x 6= y, taking v = εy, we get that

0 =
∫

V
f(x, z)

(
εy(z)− εy(x)

)
dz = f(x, y).

9



Therefore, Adu = 0 for any u ∈ C(V ). If we take u = εz, z ∼ x, then for any y ∼ x

0 =
∑
w∈V

a(x, y, w)
(
εz(w)− εz(x)

)
= a(x, y, z)

and hence A = 0.

We conclude this section with some remarks. Firstly, when ν = µ = 1, the definition of the
Laplace operator of a weighted graph is the discrete analogue of the Laplace operator of a differen-
tiable Riemannian manifold, whereas the case ν = µ corresponds to the expression of this operator
in coordinates, where µ plays the role of the module of the Jacobian determinant. In general, the
Laplace operator can also be interpreted as the discrete analogue of the Laplace-Beltrami operator
of a weighted Riemannian manifold, see for instance [1]. In this context, the discrete operators
studied in the literature basically correspond to the case in which the field A is an orthogonal
metric and µ = 1. The particular case ν = 1, leads to the so-called combinatorial Laplacian,

whereas when ν(x) =
∫

V
c(x, y) dy, the corresponding Laplace operator is the so-called probabilistic

Laplacian, which is associated with a reversible random walk whose stationary distribution is ν.
Of course, the above concept can be extended to general metrics as follows: if we suppose that the
pair (A, µ) is strongly-elliptic, then we can define the probabilistic Laplacian by considering ν as
before. In this case, the associated reversible random walk is not necessarily of nearest neighbor
type.

In the electrical network context, if A ∈ T 1(Γ) the expression f = Adu can be interpreted as
a general linear Ohm’s Law described in terms of the admittance field A, where u represents the
potential, du the voltage and f the current of the network. Therefore for any current source g ∈ C(V ),
the identity div f = g, that is L(u) = −g, represents the state equation of the network, obtained
by application of the Kirchhoff’s Laws, and then c is nothing else than the conductance function
of the network. For this reason (Γ, µ, ν, c) is called weighted network. In the electrical realm one
can find many situations that require non-diagonal admittance matrices. This is the case of the
so-called linear multiports that reflect the existence of devices other than resistances. For instance,
the most well known 2-port is the transformer that consists in a pair of coupled inductors with
inductances L1 and L2 respectively, and whose mutual inductance is given by M = k

√
L1L2. The

parameter k is called coupling coefficient and takes is values from 0 to 1. The admittance matrix of

this transformer is

(
L1 M
M L2

)
. Another usual example of electrical device is a gyrator, that is a

2-port whose admittance matrix is given by

(
0 −r
r 0

)
, where g =

1
r

is named gyration constant.

For more examples and a deeper analysis of the mathematical treatment of multiports we refer to
the interested reader to [16].

4 Integration by Parts and Green’s Identities

In this section we aim to establish the discrete analogous of the Integration by Parts technique and
moreover we are also interested in some useful consequences of it, namely the Divergence Theorem
and the Green’s Identities, that play a fundamental role in the analysis of boundary value problems.
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These results are given on a finite vertex subset, the discrete equivalent to a compact region, so we
need to define the discrete analogous of the exterior normal vector field to the set. Throughout this
section we consider fixed (Γ, µ, ν) a weighted graph and F ⊂ V a fixed proper finite and connected
vertex subset.

The normal vector field to F is defined as nF = −dχF . Therefore, the component function
of nF is given by nF (x, y) = 1 when y ∼ x and (x, y) ∈ δ(F c) × δ(F ), nF (x, y) = −1 when
y ∼ x and (x, y) ∈ δ(F ) × δ(F c) and nF (x, y) = 0, otherwise. In consequence, n

Fc = −nF and
supp(nF ) = δ(F c) ∪ δ(F ).

Proposition 4.1 (Integration by Parts) Given f ∈ X (Γ) a ν-flow, then for any functions u, v ∈
C(F̄ ) it is verified that∫

F
v〈f, du〉 dν =

∫
F̄×F̄

fF (x, y)v(x)u(y)ν(x) dxdy −
∫

F
Div (νf) uv dx

−
∫

δ(F )
v〈fF , du〉 dν +

∫
δ(F )

〈f, nF 〉uv dν

and therefore,∫
F

(
v〈f, du〉+ u〈f, dv〉

)
dν = − 2

∫
F

Div (νf) uv dx

−
∫

δ(F )

(
v〈fF , du〉+ u〈fF , dv〉

)
dν + 2

∫
δ(F )

〈f, nF 〉uv dν.

Proof. Firstly, taking into account that f = fF on F we get that∫
F̄

v〈fF , du〉 dν =
∫

F
v〈f, du〉 dν +

∫
δ(F )

v〈fF , du〉 dν.

On the other hand, Div (νfF )(x) = ν(x)
∫

F̄
fF (x, y) dy for any x ∈ V , since f is a ν-flow, and hence

∫
F̄

v〈fF , du〉 dν =
∫

F̄×F̄
ν(x)fF (x, y)u(y)v(x) dydx−

∫
F̄

Div (νfF ) uv dx.

So, the first claim is consequence of the identities Div (νfF ) = Div (νf) on F and Div (νfF ) =
−〈f, nF 〉ν on δ(F ).

Finally, the second claim is a standard consequence of the first one taking into account that∫
F̄×F̄

fF (x, y)u(x)v(y)ν(x) dxdy = −
∫

F̄×F̄
fF (x, y)v(x)u(y)ν(x) dxdy,

since f is a ν-flow.

Corollary 4.2 (Divergence Theorem) For any µ-flow g ∈ X (Γ), it is verified that∫
F

div g dν =
∫

δ(F )
〈g, nF 〉 dµ.

11



Proof. If f = µ
ν g, then f is a ν-flow and hence

1
ν

Div (νf) =
1
ν

Div (µg) = div g. The result follows

taking u = v = χF̄ in the second identity of Proposition 4.1.

Note that when µ = 1 and ν = k the equality in the above corollary coincides with the one
obtained in [17].

Our next objective is to describe the discrete version of Green’s Identities on F , for the second
order operator L(u) = −div (Adu), where A is a symmetric field of endomorphisms. For any
u ∈ C(F̄ ), from the first equality of Proposition 3.2 we get that

L(u)(x) =
1

ν(x)

∫
F̄

c(x, y)
(
u(x)− u(y)

)
dy + q

A
(x)u(x), x ∈ F, (10)

where q
A
:F −→ R is defined as

q
A
(x) =

1
ν(x)

∫
δ(F̄ )

c(x, y) dy = − 1
2ν(x)

∫
δ(F̄ )×δ(F )

µ(z)a(z, x, y) dzdy, x ∈ F. (11)

Note that supp(q
A
) ⊂ δ(F c) and q

A
= 0 when A is a diagonal field of endomorphisms.

Identity (10) shows that for any u ∈ C(F̄ ) the values of L(u) on F appear as the sum of two

terms of different nature: The first one,
1

ν(x)

∫
F̄

c(x, y)
(
u(x)− u(y)

)
dy, that we call the principal

part of L on F , looks like a combinatorial laplacian and it depends on the connectivity between
vertices in F as well as on the connectivity between vertices in F and in δ(F ). The second one,
q

A
u, is a 0-order term that represents the kind of connectivity between F and its exterior, (F̄ )c. In

other words, the operator L on C(F̄ ) is a combinatorial Schrödinger operator whose ground state is
q

A
, see [3].

To develop a discrete version of the Green’s Identities it is also necessary to introduce a discrete
analogue of the co-normal derivative for functions supported by F̄ . So, fixed F , for any field of
endomorphisms A, we define the co-normal derivative on F with respect to A as the linear operator
∂

∂n
A

: C(F̄ ) −→ C(δ(F )) that assigns to any u ∈ C(F̄ ) the function given by

(
∂u

∂n
A

)
(x) =

1
ν(x)

∫
F

c(x, y)
(
u(x)− u(y)

)
dy, x ∈ δ(F ). (12)

When A is a diagonal field of endomorphisms the above definition coincides with the given by other
authors see for instance [3, 5, 7] and references therein.

Proposition 4.3 (Green’s Identities) For any u, v ∈ C(F̄ ) the following identities hold:

(i) First Green Identity∫
F

vL(u) dν =
1
2

∫
F̄×F̄

cF (x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
dxdy +

∫
F

q
A
uv dν −

∫
δ(F )

v
∂u

∂n
A

dν.

(ii) Second Green Identity∫
F

(
vL(u)− uL(v)

)
dν =

∫
δ(F )

(
u

∂v

∂n
A

− v
∂u

∂n
A

)
dν.

12



Proof. Tacking into account the expression (10), we obtain that for any u, v ∈ C(F̄ )∫
F

vL(u) dν =
∫

F×F̄
c(x, y)

(
u(x)− u(y)

)
v(x) dydx +

∫
F

q
A
uv dν

=
∫

F̄×F̄
cF (x, y)

(
u(x)− u(y)

)
v(x) dydx +

∫
F

q
A
uv dν −

∫
δ(F )

v
∂u

∂n
A

dν,

and the First Green Identity follows reasoning as in the proof of Proposition 3.2 to get∫
F̄×F̄

cF (x, y)
(
u(x)− u(y)

)
v(x) dydx =

1
2

∫
F̄×F̄

cF (x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
dydx.

The Second Green Identity is a direct consequence of the first one.

When µ = 1 and A is a diagonal field, the above Green’s Identities correspond to those obtained
by several authors, see principally [3, 5, 7, 10, 14].

5 Boundary Value Problems on weighted networks

Our aim in this section is to describe boundary value problems on a finite vertex subset of a
weighted graph, or network, associated with second order operators on C(V ) as well as to provide
its variational or weak formulation. We will newly suppose fixed the weighted graph (Γ, µ, ν), a
finite subset F ⊂ V , a symmetric field of endomorphisms A, a vector field f and two vertex functions
q ∈ C(F ) and p ∈ C(δ(F )). In addition, we also consider c the coefficient function of the pair (A, µ).

Associated with the above data, we define the difference operator L: C(V ) −→ C(V ) given by

L(u) = −div (Adu) + 〈f, du〉+ q u (13)

and also the boundary operator U : C(F̄ ) −→ C(δ(F )) given by

U(u) =
∂u

∂n
A

+ 〈fF , du〉+ p u. (14)

If a ∈ C(Γ × Γ) and f ∈ C(Γ) are the component functions of A and f, respectively, consider
ã ∈ C(Γ × Γ) defined for any x, y, z ∈ V as ã(x, y, z) = a(x, y, z), when z 6= y and ã(x, y, y) =

a(x, y, y) − 1
2µ(x)

(
ν(x)f(x, y) + ν(y)f(y, x)

)
. Then, if Ã is the field of endomorphisms whose

coefficient function is ã and f̃ = 1
ν (̂νf) it is easy to check that

L(u) = −div (Ãdu) + 〈̃f, du〉+ qu and U(u) =
∂u

∂n
Ã

+ 〈̃fF , du〉+ p u,

for any u ∈ C(V ). Since Ã is a symmetric field of endomorphisms and f̃ is a ν-flow, we can suppose
without loss of generality that the fixed field f is a ν-flow.

Given δ(F ) = H1 ∪H2 a partition of δ(F ) and functions g ∈ C(F ), g1 ∈ C(H1), g2 ∈ C(H2), a
boundary value problem on F consists in finding u ∈ C(F̄ ) such that

L(u) = g on F, U(u) = g1 on H1 and u = g2 on H2. (15)
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The associated homogeneous boundary value problem consists in finding u ∈ C(F̄ ) such that
L(u) = 0 on F , U(u) = 0 on H1 and u = 0 on H2. It is clear that the set of solutions of the
homogeneous boundary value problem is a vector subspace of C(F ∪ H1) that we denote by V.
Moreover if Problem (15) has solution and u is a particular one, then u + V describes the set of all
its solutions.

Problem (15) is generically known as a mixed Dirichlet-Robin problem, specially when p 6= 0, and
H1,H2 6= ∅, and summarizes the different boundary value problems that appear in the literature
with the following proper names:

i) Dirichlet problem: ∅ 6= H2 = δ(F ) and hence H1 = ∅.

ii) Robin problem: p 6= 0, ∅ 6= H1 = δ(F ) and hence H2 = ∅.

iii) Neumann problem: p = 0, ∅ 6= H1 = δ(F ) and hence H2 = ∅.

iv) Mixed Dirichlet-Neumann problem: p = 0 and H1,H2 6= ∅.

In addition, when Γ is a finite graph it is possible that H1 = H2 = ∅ and hence F = V . In this
case, Problem (15) is known as the Poisson equation on V .

Consider now the difference operator L∗: C(V ) −→ C(V ) given by

L∗(u) = −div (Adu)− 〈f, du〉+
(

q − 2
ν

Div (νf)
)

u, (16)

the boundary operator U∗: C(F̄ ) −→ C(δ(F )) given by

U∗(u) =
∂u

∂n
A

− 〈fF , du〉+
(
p + 2〈f, nF 〉

)
u (17)

and the (homogeneous) boundary value problem on F

L∗(u) = 0 on F, U∗(u) = 0 on H1 and u = 0 on H2. (18)

The above problem is called the Adjoint Problem of (15) and the subspace of its solutions is denoted
by V∗. Moreover, we say that Problem (15) is self-adjoint when L = L∗ on F and U = U∗ on H1.
This property implies that Div (νf) = 0 on F and that 〈f, nF 〉 = 0 on H1. In particular problem
(15) is self-adjoint when f = 0 on F̄ .

To describe the conditions that assure the existence and uniqueness of solutions of the boundary
value problem (15) we need to extend the Second’s Green Identity to operators L and L∗.

Proposition 5.1 For any u, v ∈ C(F̄ ) it is verified that∫
F

(
vL(u)− uL∗(v)

)
ν dx =

∫
δ(F )

(
uU∗(v)− vU(u)

)
ν dx.

In particular, problems (15) and (18) are mutually adjoint.

14



Proof. The first claim is a direct consequence of the Integration by Parts and the Second’s Green

Identity. Moreover, if u, v ∈ C(F ∪H1) are such that U(u) = U∗(v) = 0 on H1, then
∫

δ(F )

(
uU∗(v)−

vU(u)
)

ν dx = 0 and hence
∫

F
vL(u) ν dx =

∫
F

uL∗(v) ν dx; that is, problems (15) and (18) are

mutually adjoint.

Proposition 5.2 (Fredholm Alternative) Given g ∈ C(F ), g1 ∈ C(H1) and g2 ∈ C(H2), the bound-
ary value problem

L(u) = g on F, U(u) = g1 on H1 and u = g2 on H2

has solution iff∫
F

gv dν +
∫

H1

g1v dν +
∫

H2

g2〈fF , dv〉 dν =
∫

H2

g2
∂v

∂n
A

dν, for each v ∈ V∗.

In addition, when the above condition holds, then there exists a unique solution u ∈ C(F̄ ) of the

boundary value problem such that
∫

F̄
uv dν = 0, for any v ∈ V∗.

Proof. First, observe that problem (15) is equivalent to the boundary value problem

L(u) = g − L(g2) on F, U(u) = g1 − U(g2) on H1 and u = 0 on H2

in the sense that u is a solution of this problem iff u + g2 is a solution of (15).

Consider now the linear operators F ,F∗: C(F ∪H1) −→ C(F ∪H1) defined as

F(u) =

{
L(u) on F,

U(u) on H1

and F∗(u) =

{
L∗(u) on F,

U∗(u) on H1,

respectively. Then, kerF = V, kerF∗ = V∗ and moreover, by applying Proposition 5.1 for any
u, v ∈ C(F ∪H1) it is verified that∫

F∪H1

vF(u) dν =
∫

F
vL(u) dν +

∫
δ(F )

vU(u) dν

=
∫

F
uL∗(v) dν +

∫
δ(F )

uU∗(v) dν =
∫

F∪H1

uF∗(v) dν.

Therefore the operators F and F∗ are mutually adjoint with respect to the inner product induced in
C(F ∪H1) by the weight ν and hence ImgF = V∗⊥ by applying the classical Fredholm Alternative.
Consequently problem (15) has a solution iff function g̃ ∈ C(F ∪H1) given by g̃ = g − L(g2) on F
and g̃ = g1 − U(g2) on H1 verifies that

0 =
∫

F∪H1

g̃v dν =
∫

F
gv dν +

∫
H1

g1v dν −
∫

F
vL(g2) dν −

∫
H1

v U(g2) dν

=
∫

F
gv dν +

∫
H1

g1v dν −
∫

F
g2L∗(v) dν −

∫
δ(F )

g2 U∗(v) dν

=
∫

F
gv dν +

∫
H1

g1v dν −
∫

H2

g2 U∗(v) dν,
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for any v ∈ V∗. The result follows keeping in mind that U∗(v) =
∂v

∂n
A

− 〈fF , dv〉 on H2, for any

v ∈ C(F ∪ H1). Finally, the Fredholm Alternative also establishes that when the necessary and
sufficient condition is attained there exists a unique w ∈ V∗⊥ such that F(w) = g̃. Therefore,
u = w + g2 is the unique solution of Problem (15) such that for any v ∈ V∗∫

F̄
uv dν =

∫
F∪H1

uv dν =
∫

F∪H1

wv dν = 0,

since v = 0 on H2 and g2 = 0 on F ∪H1.

Observe that as a by-product of the above proof, we obtain that dimV = dimV∗ and hence we
can conclude that uniqueness is equivalent to existence for any data.

Next, we establish the variational formulation of the boundary value problem (15), that repre-
sents the discrete version of the weak formulation for boundary value problems. In particular, we
show that the boundary operators naturally associated with the difference operator L are precisely

those of the form U(u) =
∂u

∂n
A

+ 〈fF , du〉+ p u.

Prior to describe the claimed formulation, we give some useful definitions. The bilinear form
associated with the boundary value problem (15) is B: C(F̄ )× C(F̄ ) −→ R given by

B(u, v) =
∫

F
vL(u) dν +

∫
δ(F )

vU(u) dν, (19)

and hence, from Proposition 5.1, B∗(u, v) = B(v, u) for any u, v ∈ C(F̄ ), describes the bilinear
form corresponding to the adjoint problem (18). Therefore, Problem (15) is self-adjoint iff B is
symmetric and this occurs iff fF = 0, since applying the Green’s Identities and the Integration by
Parts Formulae, we obtain that

B(u, v) =
1
2

∫
F̄×F̄

cF (x, y)
(
u(x)− u(y)

)(
v(x)− v(y)

)
dxdy

+
∫

F̄×F̄
fF (x, y) u(y)v(x)ν(x) dxdy −

∫
F

Div (νf) uv dx

+
∫

F
(q + q

A
) uv dν +

∫
δ(F )

(
p + 〈f, nF 〉

)
uv dν.

(20)

Associated with any pair of functions g ∈ C(F ) and g1 ∈ C(H1) we define the linear functional

`: C(F̄ ) −→ R as `(v) =
∫

F
gv dν +

∫
H1

g1v dν, whereas for any function g2 ∈ C(H2) we consider the

convex set Kg2 = g2 + C(F ∪H1).

Proposition 5.3 (Variational Formulation) Given g ∈ C(F ), g1 ∈ C(H1) and g2 ∈ C(H2), then
u ∈ Kg2 is a solution of Problem (15) iff

B(u, v) = `(v), for any v ∈ C(F ∪H1)

and in this case, the set u +
{
w ∈ C(F ∪H1) : B(w, v) = 0, for any v ∈ C(F ∪H1)

}
describes all

solutions of (15).
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Proof. A function u ∈ Kg2 satisfies that B(u, v) = `(v) for any v ∈ C(F ∪H1) iff∫
F

v(L(u)− g) dν +
∫

H1

v(U(u)− g1) dν = 0.

Then, the first result follows by taking v = εx, x ∈ F ∪H1. Finally, u∗ ∈ Kg2 is another solution of
(15) iff B(u∗, v) = `(v) for any v ∈ C(F ∪H1) and hence iff B(u− u∗, v) = 0 for any v ∈ C(F ∪H1).

Observe that the equality B(u, v) = `(v) for any v ∈ C(F ∪H1) assures that the condition of
existence of solution given by the Fredholm Alternative holds, since for any v ∈ C(F̄ ) it is verified
that ∫

F
gv dν +

∫
H1

g1v dν = B(u, v) = B∗(v, u) =
∫

F
uL∗(v) dν +

∫
δ(F )

uU∗(v) dν.

In particular if v ∈ V∗ we get that∫
F

gv dν +
∫

H1

g1v dν =
∫

H2

uU∗(v) dν.

On the other hand, we note that the vector subspace{
w ∈ C(F ∪H1) : B(w, v) = 0, for any v ∈ C(F ∪H1)

}
is precisely the set of solutions of the homogeneous boundary value problem associated with (15).
So, Problem (15) has solution for any data g, g1 and g2 iff it has a unique solution and this occurs
iff w = 0 is the unique function in C(F ∪ H1) such that B(w, v) = 0, for any v ∈ C(F ∪ H1).
Therefore, to assure the existence (and hence the uniqueness) of solutions of Problem (15) for any
data it suffices to provide conditions under which B(w,w) = 0 with w ∈ C(F ∪ H1), implies that
w = 0. In particular, this occurs when B is positive definite on C(F ∪H1).

We define the quadratic form associated with the boundary value problem (15) as the function
Q: C(F̄ ) −→ R given by Q(u) = B(u, u); that is,

Q(u) =
1
2

∫
F̄×F̄

cF (x, y)
(
u(x)− u(y)

)2
dxdy −

∫
F

Div (νf) u2dx

+
∫

F
(q + q

A
) u2dν +

∫
δ(F )

(
p + 〈f, nF 〉

)
u2dν.

(21)

Our next objective is to establish the conditions under which Q is positive definite on C(F ∪H1).
This problem was analyzed in [3, 4], when f = 0 and A is a diagonal field and we adapt here the
fundamental results for the general case. Consider a new network (Γ̄(F ), c̄) whose vertex set is F̄
and whose conductance is given by cF . In addition, we suppose that the pair (A, µ) is strongly
elliptic on F̄ ; that is, that cF ≥ 0 and cF (x, y) > 0 for any (x, y) ∈ (F̄ × F̄ ) \ (δ(F ) × δ(F )) such
that x ∼ y. Then, we consider the operator LF : C(F̄ ) −→ C(F̄ ) given for any x ∈ F̄ by

LF (u)(x) =
∫

F̄
cF (x, y)

(
u(x)− u(y)

)
dy (22)

and the function ρ: C(F̄ ) −→ R defined as ρ(x) = ν(x)
(
q(x)+q

A
(x)
)
−Div (νf)(x) for x ∈ F and as

ρ(x) = ν(x)
(
p(x)+〈f, nF 〉(x)

)
for x ∈ δ(F ). Then, LF +ρ is a Schrödinger operator on C(F̄ ) whose
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associated bilinear form is precisely Q. Moreover, LF (u) = −νdiv (Adu) on F and LF (u) = ν
∂u

∂nF

on δ(F ).

If σ ∈ C(F̄ ) is a weight on F̄ ; that is, σ(x) > 0 for any x ∈ F̄ , the function ρσ = − 1
σ LF (σ)

takes positive and negative values and moreover ρσ(x) > −
∫

F̄
cF (x, y) dy for any x ∈ F̄ .

Lemma 5.4 [3, Proposition 3.3] The Schrödinger operator LF +ρ is positive semi-definite iff there
exists a weight on F̄ , σ, such that ρ ≥ ρσ. In addition, when this condition holds, then u ∈ C(F̄ )
verifies LF (u) + ρu = 0 iff u is a multiple of σ when ρ = ρσ and iff u = 0, otherwise.

Now we are ready to establish the fundamental existence results. Until the end of this section,
we will assume the following hypotheses:

H1: The pair (A, µ) is strongly elliptic on F̄ .

H2: There exists σ a weight on F̄ verifying q ≥ −q
A
+

1
ν

(
ρσ +Div (νf)

)
on F and p ≥ ρσ

ν
−〈f, nF 〉

on H1.

Observe that when the weight σ is constant, then ρσ = 0 and hence hypothesis H2 says nothing else
than functions ν(q + qA)− Div (νf) and p + 〈f, nF 〉 are non-negative on F and on H1, respectively.

Proposition 5.5 Suppose that it is not simultaneously satisfied that q = −q
A

+
1
ν

(
ρσ + Div (νf)

)
on F , p =

ρσ

ν
−〈f, nF 〉 on H1 and H2 = ∅. Then for any data g ∈ C(F ), g1 ∈ C(H1) and g2 ∈ C(H2)

the boundary value problem (15) has a unique solution.

Proof. If we consider the function p̂ ∈ C(δ(F )) defined as p̂ = p on H1 and p̂ = ρσ − 〈f, nF 〉 on
H2, and the quadratic form

Q̂(u) =
1
2

∫
F̄×F̄

cF (x, y)
(
u(x)− u(y)

)2
dxdy −

∫
F

Div (νf) u2dx

+
∫

F
(q + q

A
) u2dν +

∫
δ(F )

(
p̂ + 〈f, nF 〉

)
u2dν,

then Q(u) = Q̂(u) for any u ∈ C(F ∪H1). Moreover, Lemma 5.4 assures that under hypotheses H1
and H2, Q̂ is positive definite on C(F̄ ) and hence Q is positive definite on C(F ∪H1).

Proposition 5.6 Suppose that H2 = ∅, q = −q
A
+

1
ν

(
ρσ + Div (νf)

)
on F and p =

ρσ

ν
− 〈f, nF 〉 on

δ(F ). Then for any data g ∈ C(F ), g1 ∈ C(δ(F )), the boundary value problem (15) has solution iff

it is verified that
∫

F
g σ dν +

∫
δ(F )

g1σ dν = 0. Moreover, the solution is unique up to a multiple of

σ and there exists a unique solution u ∈ F̄ such that
∫

F̄
u σ dν = 0.

18



Proof. The hypotheses imply that if v ∈ C(F̄ ) verifies Q(v) = 0 then v must be a multiple of σ.
On the other hand, V∗ = {aσ : a ∈ R} since Q is also the quadratic form associated to the adjoint
problem. Therefore, the conclusions are consequence of the Fredholm Alternative.

When Problem (15) is self-adjoint; that is when fF = 0, and hypotheses H1 and H2 are in force,
we can characterize the solutions of (15) by means of the discrete version of the celebrated Dirichlet
Principle. Recall that when problem (15) is self-adjoint then the bilinear form B is symmetric and
its associated quadratic functional is given by

Q(u) =
1
2

∫
F̄×F̄

cF (x, y)
(
u(x)− u(y)

)2
dxdy +

∫
F
(q + q

A
) u2dν +

∫
δ(F )

pu2dν.

In addition when Q is positive definite on C(F ∪ H1), then for any w ∈ C(F ∪ H1), the equality
Q(w) = 0 is equivalent to the equality B(w, v) = 0, for any v ∈ C(F ∪H1).

Note that when (15) is self-adjoint, then Div (νf) = 0 and 〈f, nF 〉 = 0 and hence hypothesis H2
simply says that q ≥ ρσ

ν
− qA on F and p ≥ ρσ

ν
on H1.

Corollary 5.7 (Dirichlet Principle) Let g ∈ C(F ), g1 ∈ C(H1), g2 ∈ C(H2) and consider the
quadratic functional J : C(F̄ ) −→ R given by

J (u) = Q(u)− 2`(u).

If Problem (15) is self-adjoint, then u ∈ Kg2 is a solution of problem (15) iff it minimizes J on
Kg2

.

Proof. It suffices to note that the variational equality in the above proposition is in fact the Euler
identity for the quadratic functional Q.

We now apply the Dirichlet Principle to a generalization of the problem of identification con-
sidered in [5, 7] in which we assume that H2 6= ∅. We remark that the problem considered in the
above mentioned works constitutes the discrete counterpart of the inverse continuous conductivity
problem for isotropic conductivities, since the considered fields of endomorphisms are diagonal. The
problem considered in the next proposition will correspond to the continuous anisotropic conduc-
tivities case. This result together with Proposition 3.4 gives a partial answer to the identification
problem. We must observe that even in the continuous case for n ≥ 3, the uniqueness of the
conductivities is an open problem for which only partial results have been stated. It is well-known
that the inverse anisotropic conductivity problem is not uniquely solvable, since a diffeomorphism
which keeps fixed the boundary of the domain produces the same Dirichlet-to-Neumann map, see
[15]. Therefore, a complete analysis of this problem in the discrete setting will require an adequate
extension of the concept of push-forward of a field of endomorphisms.

Proposition 5.8 Let A1,A2 be two symmetric fields of endomorphisms such that the pairs (A1, µ)
and (A2, µ) are strongly elliptic on F̄ and consider also the functions q1, q2 ∈ C(F ) and p1, p2 ∈
C(H1). Suppose that c1

F ≥ c2
F , where ci is the coefficient function of (Ai, µ), i = 1, 2, and that there

exists a weight on F̄ , σ, such that q2 + q
A2
≥ q1 + q

A1
≥ ρσ

ν
and p2 ≥ p1 ≥

ρσ

ν
.
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Let functions u1, u2 ∈ C(F̄ ) such that div (A1du1) − q1u1 = div (A2du2) − q2u2 = 0 on F ,
∂u1

∂n
A1

+ p1u1 =
∂u2

∂n
A2

+ p2u2 = 0 on H1 and u1 = u2,
∂u1

∂n
A1

=
∂u2

∂n
A2

on H2. Then, u1 = u2 on F̄ ,

q2(x) + q
A2

(x) = q1(x) + q
A1

(x) for any x ∈ F such that u1(x) 6= 0, p1(x) = p2(x) for any x ∈ H1

such that u1(x) 6= 0 and moreover c1
F
(x, y) = c2

F
(x, y) for any x, y ∈ F̄ such that u1(x) 6= u1(y).

Proof. If g ∈ C(H2) is given by g(x) = u1(x) = u2(x), x ∈ H2, then u1 and u2 are respectively
the unique solutions of the mixed Dirichlet-Robin boundary value problems

−div (Aidu)(u) + qiu = 0, on F ,
∂ui

∂n
Ai

+ piui = 0, on H1 and ui = g, on H2 i = 1, 2.

Therefore, if we consider the quadratic forms Q1,Q2: C(F̄ ) −→ R defined as

Qi(u) =
1
2

∫
F̄×F̄

ci
F
(x, y)

(
u(x)− u(y)

)2
dxdy +

∫
F
(qi + q

Ai
) u2dν +

∫
H1

piu
2dν, i = 1, 2

then by applying the Dirichlet Principle, we know that ui minimizes Qi on Kg, i = 1, 2. Moreover,
the hypotheses imply that Q2(u) ≥ Q1(u) for any u ∈ Kg. In addition, identity (19) implies that

Q1(u1) =
∫

H2

u1
∂u1

∂n
A1

dν =
∫

H2

u2
∂u2

∂n
A2

dν = Q2(u2) ≥ Q1(u2)

and hence u2 = u1 on F̄ . Moreover, if v = u1 = u2, then

0 =
1
2

∫
F̄×F̄

(
c2

F
(x, y)− c1

F
(x, y)

)(
v(x)− v(y)

)2
dxdy

+
∫

F
(q2 + q

A2
− q1 − q

A1
)v2 ν dx +

∫
F
(p2 − p1)v2 ν dx

and the conclusions follow.

We finish this section showing some monotonicity properties related with Problem (15) in the
self-adjoint case and under hypotheses H1 and H2. We newly adapt here the corresponding results
in [3] and we always suppose that it is not simultaneously verified that H2 = ∅, q =

ρσ

ν
− qA on F

and p =
ρσ

ν
on H1.

Proposition 5.9 (Hopf’s minimum principle) [3, Proposition 4.6] Let u ∈ C(F̄ ) such that L(u) ≥ 0
on F and U(u) ≥ 0 on H1. Suppose that there exists x∗ ∈ F such that

u(x∗) ≤ 0 and
u(x∗)
σ(x∗)

= min
x∈F̄

{
u(x)
σ(x)

}
.

Then u coincides with a non-positive multiple of σ, L(u) = 0 on F , U(u) = 0 on H1 and either
u = 0 on F ∪H1 or q =

ρσ

ν
− qA on F and p =

ρσ

ν
on H1.

Proposition 5.10 [3, Proposition 4.10] Let u ∈ C(F̄ ) such that L(u) ≥ 0 on F and U(u) ≥ 0 on
H1. If u ≥ 0 on H2, then u ≥ 0 on F̄ . Moreover either u = 0 on F ∪ H1 or u(x) > 0 for any
x ∈ F ∪H1.
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6 Boundary value problems on uniform grids

In this section we apply the results of the preceding sections to the study of a boundary value
problems on bi-dimensional uniform grids that shows the versatility of our vector calculus. In
[2] the authors showed that on a uniform grid in the Euclidean n-space, any difference scheme
with constant coefficients consistent with a second order linear differential operator of the form
−div (K∇u) + 〈k,∇u〉+ k0u and with constant coefficients, can be seen as an operator of the form
−div (Adu) + 〈f, du〉+ qu, for a suitable choice of q, f,A and ν and µ. Moreover, special properties
of the difference schemes such as consistency and positivity can be characterized in terms of q, f,A.
We remark that although our techniques and results are in force in any dimension, for sake of
simplicity we restrict us here to the bi-dimensional case.

For each h > 0 we consider the subset in R2 given by Vh = hZ2. The vertices x, y ∈ Vh are
adjacent if their Euclidean distance |x − y| equals h. Therefore, if {e1, e2} denotes the standard
basis of R2 and we define e3 = −e1 and e4 = −e2, then for any x ∈ Vh, the adjacent vertices to
x are xj = x + hej , j = 1, . . . , 4. The set of all the edges is denoted by Eh and hence we call
bi-dimensional uniform grid of size h, the weighted graph (Γh, µ, ν) where Γh = (Vh, Eh) and ν, µ
are the weights on Vh defined as µ(x) = h and ν(x) = h2, for any x ∈ Vh. For any x ∈ Vh we also
consider the vertices xij = x + h (ei + ej), 1 ≤ i ≤ j ≤ 4, j 6= 2 + i and we call stencil at x the set
S(x) = {y ∈ Vh : d(x, y) ≤ 2}, see Figure 1.346 E. Bendito et al. / Applied Numerical Mathematics 50 (2004) 343–370

Fig. 1. Bidimensional stencil.

The schemeLh will be called quasi-symmetricif there existsh0 such that for all 0< h � h0 it is
satisfied thatγij (h) = γn+in+j (h) for all 1 � i � j � n andγjn+i (h) = γin+j (h) for all 1� i < j � n. The
schemeLh will be calledsymmetricif it is quasi-symmetric andγj(h) = γn+j (h), for all j = 1, . . . , n.

The schemeLh is calledof non-negative typeif there existsh0 such that for all 0< h � h0, q(h) � 0,
γj (h) � 0, j = 1. . . ,2n andγij (h) � 0 for each 1� i � j � 2n, j �= n + i. The schemeLh is called
of positive typeif it is of non-negative type and there existsC > 0 such thath2γj (h) � C, for all
j = 1, . . . ,2n and forh small enough.

Of courseLh would be consistent if the coefficients of the scheme (2) verified some conditions. As
usual these conditions are obtained by replacing in (2) the values ofu at the nodes of the stencilS ′

h(x)

by its Taylor expansion. For this, it will be useful to add to our terminology the functionsγji = γij ,
1 � i � j � 2n, j �= n + i. So, for a fixed integerm � 1 and for eachx ∈ Vh we obtain

L(u)(x) − Lh(u)(x)

= φ0u(x) +
m∑

k=1

hk

k!

[
n∑

j=1

φk
j D

k
j u(x) +

k−1∑
l=1

(
k

l

) ∑
1�i<j�n

ψlk−l
ij Dl

iD
k−l
j u(x)

]
+ Tm+1(x),

where functionsφ0, φk
j , for all j = 1, . . . , n and ψlk−l

ij , for all 1 � i < j � n, k = 2, . . . ,m and
l = 1, . . . , k are given by the following equalities:

φ0 = k0 − q,

φ1
j = γj − γn+j + 2(γjj − γn+jn+j ) +

n∑
i=1
i �=j

(γij − γn+in+j + γjn+i − γin+j ) + kj

h
, (3)

φ2
j = γj + γn+j + 4(γjj + γn+jn+j ) +

n∑
i=1
i �=j

(γij + γn+in+j + γjn+i + γin+j ) − 2kjj

h2
,

ψ11
ij = γij + γn+in+j − γjn+i − γin+j − 2kij

h2
(4)

and for eachk = 3, . . . ,m,

Figure 1: Bi-dimensional stencil

We say that the vector field f is the homogeneous field determined by b = (bj) ∈ R4 if f(x, xj) =
bj

h
for all x ∈ Vh, j = 1, . . . , 4. Moreover f is a flow iff b2+j = −bj , j = 1, 2. In addition,

we will say that a field of endomorphisms, A is homogeneous if there exists a square 4-matrix
A = (aij) such that a(x, xi, xj) =

aij

h
, for all x ∈ Vh, i, j = 1, . . . , 4. In this case, we say that

the homogeneous field A is determined by A. Moreover if we consider A1, A2, A3, A4 square 2-

matrices such that A =

[
A1 A2

A3 A4

]
and B = 1

2

[
A1 + A∗

4 A2 + A∗
3

A3 + A∗
2 A4 + A∗

1

]
in [2, Corollary 3.2] it was

proved that div (Adu) = div (Bdu) which represents a discrete version of the equality between cross

derivatives. So, in what follows we assume without loss of generality that A =

[
A1 A2

A∗
2 A∗

1

]
.
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We call (second order) difference scheme with constant coefficients on {Γh}h>0, a family of
second order linear operators Lh : C(Vh) −→ C(Vh) such that for any x ∈ Vh

Lh(u)(x) = q(h)u(x) +
4∑

j=1

γj(h)
(
u(x)− u(xj)

)
+

∑
1≤i≤j≤4

j 6=2+i

γij(h)
(
u(x)− u(xij)

)
, (23)

where q, γj , γij : (0,+∞) −→ R. For the sake of simplicity, we only consider difference schemes
verifying that γij = γ2+i 2+j for any i, j = 1, 2 and γ14 = γ23. We remark that, in practice, this is
a non-relevant restriction.

One of the fundamental questions in Numerical Analysis is to characterize all difference schemes
with constant coefficients on {Γh}h>0 that are consistent with a second order differential operator
with constant coefficients. Recall that given r > 0, the difference scheme Lh is called r-consistent
with the differential operator L on {Γh}h>0 if L(u)(x) − Lh(u)(x) = O(hr), for any x ∈ Vh and
for any u smooth enough. In the literature the study of consistency is usually performed from the
expression (23), but this process is quite intricate, in general. We take advantage by expressing the
difference scheme as a difference operator of the form −div (A du)+ 〈f, du〉+ q u and characterizing
consistency in terms of q, f and A.

Proposition 6.1 ([2, Proposition 4.8]) If Lh is a difference scheme with constant coefficients,
then there exist a unique function q, a unique homogeneous field of endomorphisms A and a unique
homogeneous flow f such that

Lh(u) = −div (Adu) + 〈f, du〉+ q u.

Moreover, if K = (kij) 6= 0 is a symmetric matrix, then all difference schemes that are 2-consistent
with the second order differential operator with constant coefficients

L(u) = −k11uxx − 2k12uxy − k22uyy + k1ux + k2uy + k0u

have the expression
Lh(u) = −div (Adu) + 〈f, du〉+ k0u,

where f is the flow determined by
kj

2
, j = 1, 2 and A is the homogeneous field of endomorphisms

determined by A =

[
K + M M

M K + M

]
, where M is an arbitrary symmetric matrix. In addition,

it is possible to choose M in such a way that −div (Adu) is the Laplace-Beltrami operator corre-
sponding to a metric on Γh iff L is a semi-elliptic operator, whereas it is possible to choose M in
such a way that the pair (A, µ) is strongly elliptic on Vh iff k0 ≥ 0 and min{k11, k12} > |k12|.

Our next aim is to analyze the consistence of the discrete boundary value problem that approx-
imate the following Robin boundary value problem on the unit square S = [0, 1]× [0, 1]

L(u) = −k11uxx − 2k12uxy − k22uyy + k1ux + k2uy + k0u = g on (0, 1)× (0, 1)

U(u) = −k12ux − (k22 + k2)uy + k0u = g1 on [0, 1]× {0}

U(u) = k12ux + (k22 + k2)uy + k0u = g1 on [0, 1]× {1}

U(u) = −(k11 + k1)ux − k12uy + k0u = g1 on {0} × [0, 1]

U(u) = (k11 + k1)ux + k12uy + k0u = g1 on {1} × [0, 1]
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For this, we consider n ∈ N∗, h =
1
n

and the set

Fh = {h(i, j) ∈ hZ2 : i, j = 1, . . . , n− 1} ⊂ Vh.

In addition, we redefine the weight ν on the vertex boundary of Fh, in such a way that ν(x) = h
for any x ∈ δ(Fh). This is due to the fact that the boundary has lower dimension than the interior
of the set, and the value h2 makes reference to the area of a cell.

Then, the following identities hold:
◦
F h= {h(i, j) ∈ hZ2 : i, j = 2, . . . , n− 2},

δ(Fh) = {h(0, j), h(n, j), h(j, 0), h(j, n) : j = 1 . . . , n− 1}.

Moreover, the vertex boundary can be partitioned into two disjoint sets. The corner set of δ(Fh) is
C(Fh) = {h(0, j), h(n, j), h(j, 0), h(j, n) : j = 1, n− 1} and the set of typical nodes of the boundary,
is δ(Fh) \ C(Fh), see Figure 2.

vertices in C(Fh)

vertices in δ(Fh) \ C(Fh)

vertices in Fh\
◦

Fh

vertices in

◦

Fh

Figure 2: Different types of vertices

Given u ∈ C(F̄h), the scheme Lh(u) given in Proposition 6.1 has the following expression for
any x ∈ Fh:

Lh(u)(x) =
1
h2

2∑
j=1

( 2∑
i=1

(kij + 2mij)
)(

2u(x)− u(xj)− u(x2+j)
)

− m12

h2

(
2u(x)− u(x12)− u(x34)

)
− (k12 + m12)

h2

(
2u(x)− u(x14)− u(x23)

)

−
2∑

j=1

mjj

2h2

(
2u(x)− u(xjj)− u(x2+j2+j)

)
+

2∑
j=1

kj

2h

(
u(xj)− u(x2+j)

)
+ k0u(x).

On the other hand, the expression of the corresponding discrete boundary operator,

Uh(u) =
∂u

∂n
A

+ 〈fF , du〉+ k0u,
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is given by:

If x = h(i, 0), i = 2, . . . , n− 2, then

Uh(u)(x) =
1
h

(
k22 + k12 + 2(m22 + m12)−

k2

2

)(
u(x)− u(x2)

)
− m22

2h

(
u(x)− u(x22)

)
− m12

h

(
u(x)− u(x12)

)
− (m12 + k12)

h

(
u(x)− u(x23)

)
+ k0u(x).

If x = h(1, 0), then

Uh(u)(x) =
1
h

(
k22 + k12 + 2(m22 + m12)−

k2

2

)(
u(x)− u(x2)

)
− m22

2h

(
u(x)− u(x22)

)
− m12

h

(
u(x)− u(x12)

)
+ k0u(x).

If x = h(n− 1, 0), then

Uh(u)(x) =
1
h

(
k22 + k12 + 2(m22 + m12)−

k2

2

)(
u(x)− u(x2)

)
− m22

2h

(
u(x)− u(x22)

)
− (m12 + k12)

h

(
u(x)− u(x23)

)
+ k0u(x).

The value of the boundary operator in the rest of boundary vertices can be obtained analogously.
The pair (Lh,Uh) is called difference scheme on {F̄h}h>0.

Proposition 6.2 Under the above conditions, for any u smooth enough, the difference scheme
(Lh,Uh) on {F̄h}h>0 verifies the following properties:

(i) L(u)(x)− Lh(u)(x) = O(h2) for any x ∈ Fh.

(ii) U(u)(x)− Uh(u)(x) = O(1) for any x ∈ δ(Fh).

(iii) U(u)(x)−Uh(u)(x) = O(h) for any x ∈ δ(Fh) \C(Fh) iff k1 = k2 = 0 and M = m

(
0 1
1 0

)
.

(iv) U(u)(x)− Uh(u)(x) = O(h) for any x ∈ δ(Fh) iff k1 = k2 = 0, k12 = 0 and M = 0.

Proof. Note that (i) is a direct consequence of Proposition 6.1. The rest of results are based on
the Taylor expansion of u at any node of the stencil,

u(x + h1, y + h2) = u(x, y) + h1ux(x, y) + h2uy(x, y)

+
h2

1

2
uxx(x, y) + h1h2uxy(x, y) +

h2
2

2
uyy(x, y) + O(h3

1 + h3
2).

So, (ii) is obvious. If z = h(i, 0), i = 2, . . . , n− 2, then

U(u)(z)− Uh(u)(z) =
1
2

(2m22 − 3k2) uy(z)− h

2
(2m12 + k12) uxx(z)

− h

4
(2k22 + k2) uyy(z) + hk12uxy(z) + O(h2).
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Therefore, U(u)(z)− Uh(u)(z) = O(h) iff m22 = 3k2
2 . If z = h(i, n), i = 2, . . . , n− 2, then

U(u)(z)− Uh(u)(z) =
1
2

(k2 − 2m22) uy(z)− h

2
(2m12 + k12) uxx(z)

+
h

4
(2k22 + k2) uyy(z) + hk12uxy(z) + O(h2).

Therefore, U(u)(z) − Uh(u)(z) = O(h) iff m22 = k2
2 . In conclusion, m22 = k2 = 0. Reasoning

analogously for nodes z = h(0, j) and z = h(n, j), j = 2, . . . , n− 2, we conclude (iii).

Under conditions of (iii), if we consider z = h(1, 0), then

U(z)− Uh(u)(z) = (m + k12)
(
ux(z)− uy(z)

)
− h

2
m uxx(z)

+
h

2
(m + k12 + k22) uyy(z)− h muxy(z) + O(h2).

Therefore, U(u)(z)− Uh(u)(z) = O(h) iff m = −k12. Moreover, if z = h(n− 1, 0), then

U(z)− Uh(u)(z) = m
(
ux(z) + uy(z)

)
− h

2
(m + k12)uxx(z)

+
h

2
(m + k22) uyy(z) + h(m + k12)uxy(z) + O(h2)

and hence, U(u)(z) − Uh(u)(z) = O(h) iff m = 0. Therefore, k12 = 0 and the claim (iv) follows
since the rest of vertices of C(Fh) do not introduce more conditions.

To end the paper we assume the hypotheses of Proposition 6.2(iii) and we show the value of m
for the most commonly used difference schemes, see [2] and the references therein. Recall that in
this case, the fact that the pair (A, µ) is strongly elliptic is equivalent to the fact that the scheme
(Lh,Uh) is of positive type. In any case, we only show the expression for Uh in nodes of the form
x = h(i, 0), i = 1, . . . , n− 1, since the expression in the rest of nodes is analogue.

The value m = 0 corresponds to the standard difference scheme, that is of positive type iff
k0 ≥ 0 and K is a strictly diagonally dominant M -matrix, s.d.d M -matrix in short. So, if x ∈ Fh,

Lh(u)(x) =
1
h2

2∑
j=1

( 2∑
i=1

kij

)(
2u(x)− u(xj)− u(x2+j)

)
− k12

h2

(
2u(x)− u(x14)− u(x23)

)
+ k0u(x).

If x = h(i, 0), i = 2, . . . , n− 1, then

Uh(u)(x) =
1
h

(
k22 + k12

)(
u(x)− u(x2)

)
− k12

h

(
u(x)− u(x23)

)
+ k0u(x),

whereas if x = h(1, 0), then Uh(u)(x) =
1
h

(
k22 + k12

)(
u(x)− u(x2)

)
+ k0u(x). In particular, when

K is diagonal the scheme is the well-known 4 point scheme.

The value m = −k12 corresponds to the difference scheme

Lh(u)(x) =
1
h2

2∑
j=1

(
kjj − k12

)(
2u(x)− u(xj)− u(x2+j)

)
+

k12

h2

(
2u(x)− u(x12)− u(x34)

)
+ k0u(x).
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If x = h(i, 0), i = 1, . . . , n− 2, then

Uh(u)(x) =
1
h

(
k22 − k12

)(
u(x)− u(x2)

)
+

k12

h

(
u(x)− u(x12)

)
+ k0u(x),

whereas if x = h(n−1, 0), then Uh(u)(x) =
1
h

(
k22−k12

)(
u(x)−u(x2)

)
+k0u(x). The above scheme

is of positive type iff k0 ≥ 0 and K is a non-negative and s.d.d. matrix.

When, K is a diagonal matrix, the value m = − (k11+k22)
12 leads to the nine-point difference

scheme

Lh(u)(x) =
(5k11 − k22)

6h2

(
2u(x)− u(x1)− u(x3)

)
+

(5k22 − k11)
6h2

(
2u(x)− u(x2)− u(x4)

)
+

(k11 + k22)
12h2

(
4u(x)− u(x12)− u(x34)− u(x23)− u(x14)

)
+ k0u(x).

If x = h(i, 0), i = 2, . . . , n− 2, then

Uh(u)(x) =
(5k22 − k11)

6h

(
u(x)− u(x2)

)
+

(k11 + k22)
12h

(
2u(x)− u(x12)− u(x23)

)
+ k0u(x).

If x = h(1, 0), then

Uh(u)(x) =
(5k22 − k11)

6h

(
u(x)− u(x2)

)
+

(k11 + k22)
12h

(
u(x)− u(x12)

)
+ k0u(x).

If x = h(n− 1, 0), then

Uh(u)(x) =
(5k22 − k11)

6h

(
u(x)− u(x2)

)
+

(k11 + k22)
12h

(
u(x)− u(x23)

)
+ k0u(x).

If we suppose that k11 ≤ k22, then the above scheme is of positive type iff k0 ≥ 0, k11 > 0 and
5k11 > k22.

Finally, if K = kI, where k 6= 0 and I is the 2-order identity matrix, then the following difference
scheme is the so-called cross scheme and correspond to the choice m = −k

2 .

Lh(u)(x) =
k

2h2

(
4u(x)− u(x12)− u(x34)− u(x23)− u(x14)

)
+ k0u(x).

If x = h(i, 0), i = 2, . . . , n− 2, then

Uh(u)(x) =
k

2h

(
2u(x)− u(x12)− u(x23)

)
+ k0u(x).

If x = h(1, 0), then Uh(u)(x) =
k

2h

(
u(x) − u(x12)

)
+ k0u(x), whereas if x = h(n − 1, 0), then

Uh(u)(x) =
k

2h

(
u(x) − u(x23)

)
+ k0u(x). Observe that the above three point formula for Uh on

δ(Fh) \ C(Fh) was already obtained in [6].
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